The left heart and exact hull of an additive regular category
نویسندگان
چکیده
Quasi-abelian categories are abundant in functional analysis and representation theory. It is known that a quasi-abelian category $\mathcal{E}$ cotilting torsionfree class of an abelian category. In fact, this property characterizes categories. This ambient derived equivalent to the $\mathcal{E}$, can be constructed as heart $\mathcal{LH}(\mathcal{E})$ $t$-structure on bounded $\mathbf{D}^b(\mathcal{E})$ or localization monomorphisms $\mathcal{E}$. However, there natural examples which not quasi-abelian, but merely one-sided even weaker. Examples $\operatorname{LB}$-spaces complete Hausdorff locally convex spaces. paper, we consider additive regular generalization covers aforementioned examples. Additive characterized those subcategories closed under subobjects. As for categories, show such found $\operatorname{t}$-structure $\mathbf{D}^b(\mathcal{E})$, our proof last construction, formulate prove version Auslander's formula Whereas exact way, has structure. Such 2-universally embedded into its hull. We hull again
منابع مشابه
an investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولTHE LEFT REGULAR REPRESENTATION OF A COMMUTATIVE SEPARATIVE SEMIGROUP
In this paper, a commutative semigroup will be written as a disjoint union of its cancellative subsemigroups. Based on this fact we will define the left regular representation of a commutative separative semigroup and show that this representation is faithful. Finally concrete examples of commutative separative semigroups, their decompositions and their left regular representations are given.
متن کاملnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
On exact category of $(m, n)$-ary hypermodules
We introduce and study category of $(m, n)$-ary hypermodules as a generalization of the category of $(m, n)$-modules as well as the category of classical modules. Also, we study various kinds of morphisms. Especially, we characterize monomorphisms and epimorphisms in this category. We will proceed to study the fundamental relation on $(m, n)$-hypermodules, as an important tool in the study of a...
متن کاملInternal Categories in a Left Exact Cosimplicial Category
The notion of an internal category in a left exact cosimplicial category is introduced. For any topos over sets a certain left exact cosimplicial category is constructed functorially and the category of internal categories in it is investigated. The notion of a fundamental group is defined for toposes admitting the notion of “a discrete category.” Introduction Our primary interest in this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matematica Iberoamericana
سال: 2022
ISSN: ['2235-0616', '0213-2230']
DOI: https://doi.org/10.4171/rmi/1388